Homework 5

1. Fourier Transformation Matrix. (20 points) We shall provide an alternate mechanism to construct the Fourier transformation matrix. Recall that, for functions $\{0,1\}^n \to \mathbb{R}$, we defined the basis functions as follows. For all $S, x \in \{0,1\}^n$, we defined

$$\chi_S(x) := (-1)^{S_1 \cdot x_1 + S_2 \cdot x_2 + \dots + S_n \cdot x_n}$$

Given this definition of the Fourier basis functions, the definition of the Fourier transformation matrix $\mathcal{F}_n \in \frac{1}{N} \{+1, -1\}^{N \times N}$, where $N = 2^n$, is as follows. We shall use row indices $i \in \{0, 1, \ldots, N-1\}$ and $j \in \{0, 1, \ldots, N-1\}$ and define

$$(\mathcal{F})_{i,j} := \frac{1}{N} \chi_j(i)$$

Now, we begin the new definition using matrix tensor product. Let $A \in \mathbb{R}^{a \times b}$ and $B \in \mathbb{R}^{a' \times b'}$ be two matrices. We define the block matrix $C = A \otimes B$ as follows. For $i \in \{1, \ldots, a\}$ and $b \in \{1, \ldots, b\}$

$$C_{i,j} := a_{i,j}B$$

Base case. Define

$$\mathcal{G}_1 := \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Recursive construction. Define, for n > 1, $\mathcal{G}_n := \mathcal{G}_1 \otimes \mathcal{G}_{n-1}$. Prove, by induction, that $\mathcal{F}_n = \mathcal{G}_n$. Solution. 2. Smoothed Function Property. (20 points) Let $f: \{0,1\}^n \to \mathbb{R}$ be a function. Let $L_p(f)$ be the norm defined as follows

$$L_p(f) := \left(\frac{1}{N} \sum_{x \in \{0,1\}^n} |f(x)|^p\right)^{1/p}$$

For any $\rho \in [0,1]$, prove that $L_p(T_\rho(f)) \leq L_p(f)$. Equality holds if and only if f is a constant function, or $\rho = 1$.

Solution.

3. Most Random functions are Small Biased. (20 points) Let $f: \{0,1\}^n \to \{+1,-1\}$ be a boolean function. Suppose we consider a *random* boolean function such that, for every $x \in \{0,1\}^n$, we assign f(x) independently and uniformly at random from the set $\{+1,-1\}$. Recall that a function f is small biased if $|\mathsf{bias}_f(S)| \leq \varepsilon$ for all $0 \neq S \in \{0,1\}^n$.

Formally state and prove a concentration result that proves: "a random boolean function is small-biased with very high probability."

Solution.

4. **Differential Operator.** (20 points) We shall consider functions $\{0,1\}^n \to \mathbb{R}$. Let us introduce a notation. Given $x \in \{0,1\}^n$, we represent $x|_{i=1}$ as the bit-string identical to x except that its *i*-th coordinate is fixed to 1. Similarly, $x|_{i=0}$ is the bit-string that is identical to xexcept that its *i*-th coordinate is fixed to 0.

Let $D_i(f)$ be the function $\{0,1\}^n \to \mathbb{R}$ defined as follows

$$D_i(f)(x) = f(x|_{i=1}) - f(x|_{i=0})$$

Express $\widehat{D_i(f)}$ as a function of \widehat{f} . Solution. 5. Flats are Small-biased Distribution. (20 points) We shall consider function $\mathbb{Z}_p \to \mathbb{C}$ in this problem. Define $\omega = \exp(2\pi i/p)$. Recall that we defined, for $S \in \mathbb{Z}_p$, as follows

$$\mathsf{bias}_f(S) = \sum_{x \in \mathbb{Z}_p} f(x) \omega^{S \cdot x}$$

Let X be a uniform distribution over the set $\{0, 1, \ldots, t-1\}$, for some integer t < p. Prove that

$$\operatorname{bias}_{\mathbb{X}}(1) \leqslant \frac{\operatorname{sinc}(\pi t/p)}{\operatorname{sinc}(\pi/p)},$$

where $\operatorname{sinc}(x) := \sin(x)/x$

Solution.

Collaborators :